Pearson

Mark Scheme (Results)

Summer 2017

Pearson Edexcel International GCSE
In Mathematics A (4MAO) Paper 3H

Edexcel and BTEC Qualifications

Edexcel and BTEC qualifications are awarded by Pearson, the UK's largest awarding body. We provide a wide range of qualifications including academic, vocational, occupational and specific programmes for employers. For further information visit our qualifications websites at www.edexcel.com or www.btec.co.uk. Alternatively, you can get in touch with us using the details on our contact us page at www.edexcel.com/contactus.

Pearson: helping people progress, everywhere

Pearson aspires to be the world's leading learning company. Our aim is to help everyone progress in their lives through education. We believe in every kind of learning, for all kinds of people, wherever they are in the world. We've been involved in education for over 150 years, and by working across 70 countries, in 100 languages, we have built an international reputation for our commitment to high standards and raising achievement through innovation in education. Find out more about how we can help you and your students at: www.pearson.com/uk

Summer 2017
Publications Code 4MA0_3H_1706_MS
All the material in this publication is copyright
© Pearson Education Ltd 2017

General Marking Guidance

- All candidates must receive the same treatment. Examiners must mark the first candidate in exactly the same way as they mark the last.
- Mark schemes should be applied positively. Candidates must be rewarded for what they have shown they can do rather than penalised for omissions.
- Examiners should mark according to the mark scheme not according to their perception of where the grade boundaries may lie.
- There is no ceiling on achievement. All marks on the mark scheme should be used appropriately.
- All the marks on the mark scheme are designed to be awarded. Examiners should always award full marks if deserved, i.e. if the answer matches the mark scheme. Examiners should also be prepared to award zero marks if the candidate's response is not worthy of credit according to the mark scheme.
- Where some judgement is required, mark schemes will provide the principles by which marks will be awarded and exemplification may be limited.
- When examiners are in doubt regarding the application of the mark scheme to a candidate's response, the team leader must be consulted.
- Crossed out work should be marked UNLESS the candidate has replaced it with an alternative response.
- Types of mark
- M marks: method marks
- A marks: accuracy marks
- B marks: unconditional accuracy marks (independent of M marks)
- Abbreviations
- cao - correct answer only
- ft - follow through
- isw - ignore subsequent working
- SC - special case
- oe - or equivalent (and appropriate)
- dep - dependent
- indep - independent
- eeoo - each error or omission

- No working

If no working is shown then correct answers normally score full marks
If no working is shown then incorrect (even though nearly correct) answers score no marks.

- With working

If there is a wrong answer indicated on the answer line always check the working in the body of the script (and on any diagrams), and award any marks appropriate from the mark scheme.
If it is clear from the working that the "correct" answer has been obtained from incorrect working, award 0 marks.
Any case of suspected misread loses A (and B) marks on that part, but can gain the M marks.
If working is crossed out and still legible, then it should be given any appropriate marks, as long as it has not been replaced by alternative work.
If there is a choice of methods shown, then no marks should be awarded, unless the answer on the answer line makes clear the method that has been used.
If there is no answer on the answer line then check the working for an obvious answer.

- Ignoring subsequent work

It is appropriate to ignore subsequent work when the additional work does not change the answer in a way that is inappropriate for the question: eg. Incorrect cancelling of a fraction that would otherwise be correct.
It is not appropriate to ignore subsequent work when the additional work essentially makes the answer incorrect eg algebra.
Transcription errors occur when candidates present a correct answer in working, and write it incorrectly on the answer line; mark the correct answer.

- Parts of questions

Unless allowed by the mark scheme, the marks allocated to one part of the question CANNOT be awarded in another.

International GCSE Maths: Apart from Question 9, 10, 14b, 19b and 22, where the mark scheme states otherwise, the correct answer, unless clearly obtained by an incorrect method, should be taken to imply a correct method.

Q	Working	Answer	Mark	Notes
1 (a)		$5(2 a+5)$	1	B1
(b)		$w(7 w-4)$	1	B1
(c)				M1 for p^{3} or $(-) 5 p^{2}$
		$p^{3}-5 p^{2}$	2	A1
(d)	$x^{2}+7 x-3 x-21$			M1 for 3 correct terms or 4 correct terms ignoring signs or $\begin{gathered} x^{2}+4 x+c \text { or } \\ \ldots .+4 x-21 \end{gathered}$
		$x^{2}+4 x-21$	2	A1
(e)	$2^{3}-7 \times 2$ or $8-14$ or $8-7 \times 2$ or $2^{3}-14$			M1
		-6	2	A1
				Total 8 m

$\mathbf{2}$ (a)		Vertices at $(-5,3)(-5,9)$ $(-3,9)(-3,5)(-1,5)(-1,3)$	If not B2 then award B1 for shape of correct size and orientation in incorrect position or 4 out of 6 vertices correct	
(b)		Vertices at $(7,-1)(7,-3)$ $(4,-3)(4,-2)(6,-2)(6,-1)$	If not B2 then award B1 for correct orientation but incorrect position or B1 for rotation 90° clockwise about (7, 3)	
			2	

3 (a)	E.g. $\frac{300}{4} \times 10$			M1for a correct scale factor or a correct first step E.g. $\frac{300}{4}$ or 75 or $\frac{10}{4}$ or 2.5 or $300 \div 4(=75)$
			250	A1
(b)	E.g. $\frac{920}{115} \times 4$		M1for a correct scale factor or a correct first step E.g. $\frac{920}{115}$ or 8 or $\frac{115}{4}$ or 28.75	

4 (a)		$\begin{gathered} 3<L \leq \\ 4 \end{gathered}$	1	B1	Accept 3-4
(b)	$\operatorname{Eg} 0.5 \times 4+1.5 \times 5+2.5 \times 11+3.5 \times 14+4.5 \times 6$ or $2+7.5+27.5+49+27$ or 113			M2 $f \times d$ for at least 4 products with correct midinterval values and intention to add. If not M2 then award M1 for d used consistently for at least 4 products within interval (including end points) and intention to add or for at least 4 correct products with correct mid-interval values with no intention to add	
	$\begin{aligned} & (0.5 \times 4+1.5 \times 5+2.5 \times 11+3.5 \times 14+4.5 \times 6) \div \\ & 40 \\ & \text { or } 113 \div 40 \end{aligned}$				dep on M1 (ft their products) NB: accept their 40 if addition of frequencies is shown
		2.8	4	A	Allow 2.82, 2.83 or 2.825
					Total 5 marks

6	$(-3,-2)(-2,0)(-1,2)$ $(0,4)(1,6)(2,8)(3,10)$	Correct line between $x=-3$ and $x=3$	3	B3for a correct line between $x=-3$ and $x=3$ (inclusive) If not B3 then award B2 for a correct line through at least 3 of $(-3,-2)(-2,0)(-1,2)(0,4)(1,6)(2,8)(3,10)$ or for all above points plotted correctly but not joined
If not B2 then award B1 for				
any 2 correct points stated (could be in a table) or plotted or				
may be seen in working e.g. $2 \times 1+4=6$ or				
for a line with a positive gradient through $(0,4)$ or				
for a line with gradient 2				

9	Arc centre Q cutting $Q P$ and $Q R$ at A and B with $A Q=B Q$ and arcs with same radius centre A and B intersecting in guidelines			M1 for a relevant pair of intersecting arcs within guidelines
	Correct angle bisector	2	A1dep on M1 SC: B1 for line within guidelines	
				Total 2 marks

10	Eg$10 x+35 y$	$\begin{aligned} 6 x+21 y & =93 \\ +\quad 35 x-21 y & =112 \end{aligned}$			M1 for coefficient of x or y the same and correct operation to eliminate selected variable (condone any one arithmetic error in multiplication) or for correct rearrangement of one equation followed by correct substitution in the other.	
					A1	cao (dep on M1)
						(dep on 1st M1) for substituting their found value into one of the equations or correct method of elimination to find the second variable (as for first M1)
			$x=5, y=3$	4		cao Award 4 marks for correct values if at least first M1 scored
						Total 4 marks

11 (a)	$\frac{16+8+4}{90}$			M1	
		$\frac{28}{90} \text { oe }$	2		$\text { for } \frac{28}{90} \text { oe E.g. } \frac{14}{45}, 0.31(1 \ldots), 31(.1 \ldots) \%$
(b)		4, 32, 62, 78, 86, 90	1	B	cao
(c)	$\begin{aligned} & (30,4)(40,32)(50,62)(60,78) \\ & (70,86)(80,90) \end{aligned}$				(ft from sensible table i.e. clear attempt at addition) for at least 4 points plotted correctly at end of interval or for all 6 points plotted consistently within each interval in the freq table at the correct height (e.g. used values of $25,35,45$ etc on age axis)
		correct cf graph	2	A	accept curve or line segments accept curve that is not joined to $(20,0)$
(d)	E.g. reading from graph at $t=65$ or reading of $82-84$ or mark on cf axis from using $t=65$				for evidence of using graph at $t=65$ ft from a cumulative frequency graph provided method is shown
		6-8	2		dep on a cf graph in part (c) ft from a cumulative frequency graph provided method is shown
					Total 7 marks

12 (a)		4.51×10^{-4}	1	B1	cao
(b)	$\frac{780000}{0.00024}$				for 3250000000 oe (e.g. $325 \times$ 10^{7}) or $3.25 \times 10^{5-4}$ oe or 3.25×10^{n} where n is an integer
		3.25×10^{9}	2	A1	
				Total 3 marks	

13 (E.g. $\frac{8}{12}(=0.66 \ldots)$ or $\frac{12}{8}(=1.5)$ or $\frac{d}{9}=\frac{8}{12}$ oe or $\frac{9}{12}(=0.75) \quad \text { or } \frac{12}{9}(=1.33 \ldots)$			M1 for a correct scale factor or a correct equation (may be in ratio form e.g. $12: 8=9: d$) accept $0.66 \ldots$ or $1.33 \ldots$ rounded or truncated to 2 or more decimal places
		6	2	A1
(b)	$160 \times\left(\frac{12}{8}\right)^{3}$ oe or $\sqrt[3]{\frac{V}{160}}=\frac{12}{8}$			M1 for a correct scale factor $\begin{aligned} & \left(\frac{12}{8}\right)^{3}(=3.375) \text { or } \\ & \left(\frac{8}{12}\right)^{3}(=0.296 \ldots) \end{aligned}$
		540	2	A1
(c)				M1 for $\sqrt{\frac{q}{p}}$ or $\sqrt{\frac{p}{q}}$ or $\left(\sqrt{\frac{p}{q}}\right)^{3}$ or $\left(\sqrt{\frac{q}{p}}\right)^{3}$ oe
		$w \times\left(\sqrt{\frac{q}{p}}\right)^{3}$ oe	2	A1 for $w \times\left(\sqrt{\frac{q}{p}}\right)^{3}$ oe e.g. $w \times\left(\frac{q}{p}\right)^{\frac{3}{2}}$
				Total 6 marks

14 (a)		x^{4}	1	B1
(b)	$6+4 y=3(5-2 y)$			M1 for removing fraction
	$6+4 y=15-6 y$			M1 for correct expansion of bracket in a correct equation
	$4 y+6 y=15-6$ or $10 y=9$			M1 for a correct equation with y terms isolated on one side ft their equation if first M1 awarded
		$\frac{9}{10} \text { oe }$	4	A1 dep on at least M2 SC: B2 for an answer of $y=1.5$ oe with working shown or $y=-0.1$ oe with working shown
	Alternative scheme			
	$\frac{6}{3}+\frac{4 y}{3}=5-2 y$			M1 for dividing both terms on LHS by 3 allow 1.3(3...)
	$\frac{4 y}{3}+2 y=5-\frac{6}{3}$			M1 for a correct equation with y terms isolated on one side allow 1.3(3...)
	$\frac{10 y}{3}=3$			M1 for y terms collated allow 3.3(3...)
		$\frac{9}{10}$ oe	4	A1 dep on at least M2

$\mathbf{1 4}$ (c)	$g-\mathrm{g} h=3 h+1$ or $-1-3 h=g h-g$		M1for a correct equation with terms in g isolated on one side of the equation$\quad g(1-h)=3 h+1$ or $-1-3 h=g(h-1)$	

16	E.g. $\begin{aligned} & 5 \sqrt{2} \times 3 \sqrt{2}+5 e \sqrt{2}-3 e \sqrt{2}-e^{2} \text { or } \\ & 30+2 e \sqrt{2}-e^{2} \end{aligned}$			M1 for rational terms correct ($5 \sqrt{2} \times 3 \sqrt{2}-e^{2}$) or irrational terms correct ($5 e \sqrt{2}-3 e \sqrt{2}$) NB: $5 \sqrt{2} \times 3 \sqrt{2}$ may be fully or partially simplified	
	$5 \sqrt{2} \times 3 \sqrt{2}-e^{2}=-6$ oe or rational terms correct and $e=6$ or $5 \sqrt{2} e-3 \sqrt{2} e=\sqrt{2} f$ oe or $5 e-3 e=f$ oe				dep on M1
		$\begin{gathered} e=6 \\ f=12 \end{gathered}$	3	A	
					Total

17 (a)(i)		-a+b oe	1	B1		
(a)(ii)		$-\mathbf{a}+0.5 \mathbf{b}$	1	B1	for $-\mathbf{a}+0.5 \mathbf{b}$ oe ft from (i)	
(a)(iii)		$0.5 \mathbf{a}+0.5 \mathbf{b}$	1	B1	for $0.5 \mathbf{a}+0.5 \mathbf{b}$ oe (may not be simplified) ft from (i)	
(b)	$\overrightarrow{P X}=1.5\binom{4}{2}\left(=\binom{6}{3}\right)$ or $(7,3)$ seen as coordinates for R $\overrightarrow{P V}=1.5\binom{4}{2}+\binom{-5}{4}$ or $\binom{6}{3}+\binom{-5}{4}$ or $\binom{1}{7}$ or $(X)=(3+1.5 \times 4,1+1.5 \times 2)$ or $(3+6,1+3)$ or $(9$, 4) or $\overrightarrow{O X}=\binom{9}{4}$			M1		
	$\overrightarrow{O V}=\binom{3}{1}+\binom{1}{7}$ or $\binom{4}{8}$ or $V(" 9 "-5, " 4 "+4)$				dep	
		$(4,8)$	3	A	SC: If M0 then award B1 for $(4, y)$ or $(x, 8)$	
				Total 6 marks		

$\mathbf{1 8}$ (a)	$1,4,5,40$	2	B2for all four correct (B1 for 2 or 3 correct)	
(b)(i)		1	1	B1 ft from their Venn diagram
(b)(ii)		45	1	B1 from their Venn diagram

19 (a)$x=\frac{4}{y-3}$ $x(y-3)=4$	$y=\frac{4}{x-3}$ $y(x-3)=4$		M1 for $x(y-3)=4$ or $y(x-3)=4$		
	$x y=4+3 x$ or $y-3=\frac{4}{x}$	$x y=4+3 y$ or $x-3=\frac{4}{y}$			M1

19 (b)	E.g. $(\mathrm{fg}(a)=) \frac{4}{\frac{a-2}{a}-3}$ or $4=\frac{a-2}{a}-3$ or $\frac{4 a}{a-2-3 a}(=1)$			M	for a correct expression for fg(a)
	$\begin{aligned} & \text { E.g. } 4 a=a-2-3 a \text { or } \\ & 7 a=a-2 \end{aligned}$			M	for a correct equation where the fraction has been removed.
		$a=-\frac{1}{3} \text { oe }$	3	A1	dep on M1 Accept -0.333 (333...) rounded or truncated to at least 3SF Condone the use of x rather than a
(b)	Alternative scheme				
	E.g. $\mathrm{g}(a)=\mathrm{f}^{-1}(1)$ or $\mathrm{g}(a)=\frac{4+3 \times 1}{1}$ oe or $\frac{4+3 \times 1}{1}=\frac{a-2}{a}$ or $7=\frac{a-2}{a}$			M	for use of $\mathrm{f}^{-1} \mathrm{fg}(a)=\mathrm{f}^{-1}(1)$ NB. ft for " f " ${ }^{1}$ "
	E.g. $7 a=a-2$			M	for a correct equation where the fraction has been removed. NB. ft for " f " "
		$a=-\frac{1}{3} \text { oe }$	3	A	dep on M1 Accept -0.333 (333...) rounded or truncated to at least 3SF
					Total 6 marks

21				B1 for identifying the correct angle on the diagram (may be implied by a correct trig statement)	
	$(M C=) \sqrt{5^{2}+18^{2}}$ or $\sqrt{349}$ or $18.6(8154 \ldots$. $(V C=) \sqrt{5^{2}+7^{2}+18^{2}}$ or $\sqrt{398}$ or 19.9(499..)			M	for a correct method to find $M C$ or $V C$ Accept 18.6(8154....) rounded or truncated to at least 3sf. Accept 19.9(4993..) rounded or truncated to at least 3 sf
	$\begin{aligned} & (V C M=) \tan ^{-1}\left(\frac{7}{\sqrt{349}}\right) \text { or } \\ & (V C M=) \sin ^{-1}\left(\frac{7}{\sqrt{398}}\right) \text { or } \\ & (V C M=) \cos ^{-1}\left(\frac{\sqrt{349}}{\sqrt{398}}\right) \end{aligned}$				dep M1 for a complete method to find angle $V C M$ (could be use of sine or cosine rule) $\text { e.g. } 90-\tan ^{-1}\left(\frac{\sqrt{349}}{7}\right)$
		20.5	4		accept $20.5-20.62$
				Total 4 marks	

22	E.g. $\frac{3}{2(x+6)}-\frac{x-15}{(x-8)(x+6)}$ or $\frac{3}{2 x+12}-\frac{x-15}{(x-8)(x+6)}$				$x^{2}-2 x-48$ correctly factorised NB : May be seen at a later stage
	$\begin{aligned} & \text { E.g. } \frac{3(x-8)-2(x-15)}{2(x-8)(x+6)} \text { or } \\ & \frac{3(x-8)}{2(x-8)(x+6)}-\frac{2(x-15)}{2(x-8)(x+6)} \end{aligned}$				for a correct common denominator with numerators correct This may be a single fraction or two fractions; denominators may be expanded - if so, must be correct.
	$\frac{3 x-24-2 x+30}{2(x-8)(x+6)}$				for a correct single fraction with brackets in numerator removed correctly; denominators may be expanded - if so, must be correct.
	$\frac{x+6}{2(x-8)(x+6)}$				for a correct single fraction with the numerator simplified; denominators may expanded - if so, must be correct.
		$\frac{1}{2(x-8)}$	5		$\begin{aligned} & \text { dep on at least M2 } \\ & \text { for } \frac{1}{2(x-8)} \text { or } \frac{1}{2 x-16} \text { or } \frac{-1}{16-2 x} \text { or } \frac{-1}{2(8-x)} \end{aligned}$
					Total 5 marks

	Alternative scheme			
22	$\begin{aligned} & \text { E.g. } \\ & \frac{3}{2(x+6)}-\frac{x-15}{(x-8)(x+6)} \text { or } \frac{3}{2 x+12}-\frac{x-15}{(x-8)(x+6)} \end{aligned}$			M1 $\quad x^{2}-2 x-48$ correctly factorised NB : May be seen at a later stage
	$\frac{3\left(x^{2}-2 x-48\right)-(2 x+12)(x-15)}{(2 x+12)\left(x^{2}-2 x-48\right)}$			M1 for a correct common denominator with numerators correct This may be a single fraction or two fractions; denominators may be expanded - if so, must be correct.
	$\begin{aligned} & \text { E.g. } \frac{3 x^{2}-6 x-144-2 x^{2}+30 x-12 x+180}{(2 x+12)\left(x^{2}-2 x-48\right)} \text { or } \\ & \frac{x^{2}+12 x+36}{(2 x+12)\left(x^{2}-2 x-48\right)} \end{aligned}$			M1 for a correct single fraction with brackets in numerator removed correctly; denominators may be expanded - if so, must be correct ($2 x^{3}$ $+8 x^{2}-120 x-576$)
	$\text { E.g. } \frac{(x+6)^{2}}{(2 x+12)\left(x^{2}-2 x-48\right)} \text { or } \frac{x+6}{2(x-8)(x+6)}$			M1 for a correct single fraction with the numerator factorised; denominators may expanded - if so, must be correct.
		$\frac{1}{2(x-8)}$	5	A1 dep on at least M2 for $\frac{1}{2(x-8)}$ or $\frac{1}{2 x-16}$ or $\frac{-1}{16-2 x}$ or $\frac{-1}{2(8-x)}$
				Total 5 marks

Pearson Education Limited. Registered company number 872828 with its registered office at 80 Strand, London, WC2R ORL, United Kingdom

